Synthesis and characterization of the heteroaromatic MF_6^- (M = As, **Sb) salts of the 1,2,4-trithiolanylium dication [PhCSSC(Ph)S]2+†**

T. Stanley Cameron,*a* **Andreas Decken,***b* **Min Fang***b* **and Jack Passmore****b*

a Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3

b Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2

Received (in Cambridge, UK) 2nd January 2001, Accepted 3rd May 2001 First published as an Advance Article on the web 5th July 2001

PhCSSC(Ph)S(MF6)2 (M = As, Sb), (X-ray crystal structure, FT Raman, 1H, 13C NMR and theoretical calculations) containing the first example of a dicationic 6π five**membered C–S heterocycle and sulfur were formed on** disproportionation of PhCSSS(MF₆) in liquid SO₂ solu**tion.**

We previously prepared **3** in low yield, containing the first structurally characterized example of the RCSSS⁺ ring.¹ In an

attempt to prepare a simple derivative of this ring system in good yield we reacted the previously reported² PhCS₃Cl with AgSbF₆ and to our surprise obtained PhCSSC(Ph)S(SbF₆)₂ $2(SbF₆)₂$. On further investigation we obtained PhCSSS(SbF₆)₂ $1SbF₆$ and found that it disproportionates in $SO₂$ solution to give $2(SbF_6)_2$ and elemental sulfur. 2 is the first example of a dicationic 6 π five-membered C–S heterocycle. RCS₃Cl (R = Ph, *p*-MeOC₆H₄, 1-naphthyl) are known.² Therefore the synthesis of $RCSSC(R)S(MF_6)_2$ is likely general, although it may require an R group onto which some of the $+2$ positive charge on the C_2S_3 ring can be delocalized. There are many examples of five- and six-membered C–S containing heteroaromatic rings,3,4 however the only aromatic dication previously reported is **10**. Related analogues of **2** are **6** ($R = Et$, Bu), in which the $C_2S_3^{2+}$ ring is non-planar and charges are largely localized on the exocyclic N atoms as drawn.⁵ The other C–S containing 6π five-membered cyclic heterocylcles are thiophene, 1,2-dithiolium **7**, and 1,3-dithiolium **8**.3 **2** is isolobal to SNSSN²⁺ 9 in (SNSSN)²⁺ (MF₆⁻)₂ (M = As, Sb).⁶ However unlike the $S_3N_2^{2+}$ ring, which dissociates to SNS^+ and SN^+ , 2 retains its identity in SO_2 solution. The isomeric 1,2,4-trithiolanylium dication RCSSSCR2+ has not been reported, although the 7π 1,2,3-trithiolynium monocation radical 11 is known.⁷

 $2(SbF_6)_2$ was first prepared by adding the soluble product $(0.586 \text{ g}, 1.697 \text{ mmol})$ of the PhCS₂H/SCl₂ reaction to AgSbF₆ (1.331 g, 3.874 mmol) in liquid SO_2 ; The mixture was stirred for 2 h in bulb 1 of a two-bulb Pyrex glass vessel incorporating a medium sintered-glass frit (see ref. 8). A solution over a precipitate was obtained in bulb 2 by repeatedly extracting the soluble material into bulb 2 leaving the insolubles (including AgCl) in bulb 1. The solvent in bulb 2 was then condensed back to bulb 1. About 2 ml SO_2 was condensed back (three times) onto the precipitate (in bulb 2) and the obtained solution containing the most soluble components (*e.g.* unreacted AgSbF₆ and other impurities) filtered to bulb 1. $2(SbF_6)_2$ was recovered with a trace of S_8 (Raman) from bulb 2 as an orange solid (0.446 g, 0.600 mmol, 35% yield). Single crystals of $2(SbF₆)₂$ § were grown from $SO₂$ solution. This implies the presence of $[PhCSSC(Ph)S]Cl₂$ as a main component of the soluble product of the $PhCSSH/SCI₂$ reaction. Crystals of $2(AsF₆)₂$ were obtained similarly by using AgAsF₆. An ORTEP diagram of 2 in $2(SbF_6)_2$ (-60 °C) is shown in Fig. 1. The observed and calculated (MPW1PW91/3-21G*)¶ bond distances and angles are in reasonable agreement. The structure of **2** in $2(AsF_6)_2$ (-100 °C)§ is similar. The FT Raman spectrum of $2(SbF₆)₂$ in the 50–800 cm⁻¹ region is shown in Fig. 2 (full Raman spectra of $2(SbF_6)_2$ is shown in S-Fig. 1[†]). The observed and calculated Raman frequencies and ¹³C, ¹H chemical shifts are in good agreement (Fig. 2, Table 1 and S-Table 1†).

www.rsc.org/chemcomm Communication CHEMCOMM

municatio

www.rsc.org/chemcomm

The precipitate in the $PhCSSH/SCI₂$ reaction was found to be PhCS₃Cl. \parallel PhCS₃Cl (0.570 g, 2.59 mmol) was reacted with AgSbF₆ (0.953 g, 2.79 mmol) in liquid $SO₂(9.1 g)$ to give $1SbF₆$ (0.492 g, 1.17 mmol, 45% yield). The procedure was the same as described above except that the reaction time was < 30 min and light was excluded. The initial failure to obtain $1SbF_6$ is because the soluble rather than the insoluble product of the PhCSSH/SCl₂ reaction was reacted with AgSbF₆. ¹H (Fig. 3) and ¹³C NMR spectra of $1SbF_6$ in liquid SO₂ were studied as a function of time. Observed and calculated chemical shifts of **1** are in good agreement and are given in Table 1 (Similar 1H NMR spectra found for 1AsF_6 .^{**} Peaks due to 1 decreased over time with the appearance of those of **2** and precipitation of

Fig. 1 ORTEP of $2 \text{ in } 2(\text{SbF}_6)_2$ (-60 °C) drawn at the 50% probability level. Selected bond lengths (Å), bond angles (°); and calculated results (MPW1PW91/3-21G*) are given in parentheses and in bold: C(3)–C(12) 1.424(10) (**1.418**), C(12)–C(17) 1.397(12) (**1.427**), C(12)–C(13) 1.392(11) (**1.426**), C(13)–C(14) 1.351(12) (**1.378**), C(17)–C(16) 1.365(12) (**1.378**), C(16)–C(15) 1.363(14) (**1.403**), C(15)–C(14) 1.359(14) (**1.404**), C(3)–S(4) 1.680(8) (**1.710**), S(4)–S(5) 2.024(3) (**2.062**), S(5)–C(1) 1.683(7) (**1.710**), C(1)–S(2) 1.699(7) (**1.729**), C(1)–C(6) 1.412(10) (**1.418**); C(3)–S(2)–C(1) 100.8(4) (**100.7**), S(2)–C(3)–S(4) 119.4(4) (**119.2**), C(3)–S(4)–S(5) 100.4(3) (**99.8**), S(4)–S(5)–C(1) 99.8(3) (**99.8**), S(5)–C(1)–S(2) 119.5(4) (**119.2**), C(12)–C(3)–S(4) 121.8(6) (**120.1**), C(12)–C(3)–S(2) 118.8(6) (**120.6**).

[†] Electronic supplementary information (ESI) available: S-Table 1: FT-Raman data for $2(MF_6)$ ₂ (M = As, Sb). S-Table 2: calculated/observed bond distances and angles for 2 . S-Table 3: FT-Raman data for 1MF_6 (M = As, Sb). S-Fig. 1: FT-Raman spectrum of $2(SbF_6)_2$ in the 50–4000 cm⁻¹ region. S-Fig. 2: calculated Pauling bond orders of 2 in $2(SbF_6)_2$. S-Fig. 3: FT-Raman spectrum of $1SbF_6$ in the 50–800 cm⁻¹ region. See http: //www.rsc.org/suppdata/cc/b1/b100001m/

Fig. 2 FT-Raman spectrum of $2(SbF_6)_2$ in the 50–800 cm⁻¹ region. Data in square brackets are the calculated frequencies (MPW1PW91/3-21G*).

Fig. 3 *In situ* ¹H NMR study of $1SbF_6$ in liquid SO_2 .

S8 (Raman) and an intermediate we propose could be either **4** or **5** (see Scheme 1), the mechanism of which warrants further study. Light was found to facilitate this process.

Scheme 1 Proposed mechanisms for the rearrangement of **1** to **2** in liquid $SO₂$.

The phenyl and C_2S_3 ring of 2 are planar $[\Sigma$ angles for C_2S_3 rings: 539.9° (25 °C), 540.1° (-60 °C) in $2(SbF₆)₂$, 540.0° in $2(AsF₆)₂$ (-100 °C)]. The benzyl rings and the dication ring are nearly coplanar in $2(MF_6)_2$ (M = Sb, As) with $Ph_1/CSCSS^{2+}$, Ph₂/CSCSS²⁺ and Ph₁/Ph₂ torsion angles of 3.4° (12.6°), 7.0° (168.3°) and 3.8° (176.7°) respectively in $2(SbF_6)_2$ (25 °C) and $2(AsF_6)_2$ (-100 °C) (angles in parentheses). This implies the π electrons and charges are delocalized over the three rings, supported by the short Ph–C bond distance†† and the significant F–H and F–S contacts. The sum of the Pauling bond orders (BOs) ‡‡ for the C_2S_3 ring is 6.8–6.9 in both salts (S-Fig. 2†) and

Table 1 Observed^{*a*} [in $1SbF_6$ and $2(SbF_6)$] and calculated^{*b*} (in parentheses) ¹H and ¹³C NMR chemical shifts of **1** and **2**

$\delta_{\rm H}$	$C1-H$	$C2-H$	$C3-H$	$C4-H$	$C5-H$
1			7.87 d	7.71t	7.98t
$\mathbf{2}$			(7.88) 8.44 d (8.28)	(7.91) 7.98t (8.37)	(8.44) 8.39t (9.14)
$\delta_{\rm C}$	C ₁	C ₂	C ₃	C ₄	C5
1	204.9 (213.7)	133.8 (135.2)	123.6 (125.6)	130.7 (135.6)	139.5 (153.3)
$\mathbf{2}$	216.4 (218.8)	131.0 (135.0)	133.2 (140.0)	134.4 (140.9)	148.2 (167.6)

 a Chemical shifts were obtained at room temperature in liquid SO_2 , using TMS in liquid SO₂ as external standard. *b* Isotropic NMR shielding tensors were calculated at the MPW1PW91/6-311G(2DF)//MPW1PW91/3-21G* level and referenced against calculated TMS values; $d =$ doublet, $t =$ triplet.

the π bonding mostly in the C–S region, *cf*. 12 and 13. The S–S bond distance of 2.024(3) [in $2(SbF_6)_2$, -60 °C] and 2.032(3) [in $2(AsF_6)_2$ (-100 °C)] implies the BO is slightly greater than 1 (*cf.* S–S distance: 2.05 \AA in S₈ and 2.08 \AA in C–SS–C containing compounds with C–S–S–C dihedral angle of $0^{\circ 10}$). Consistently, the S–S stretching frequency at 504 cm⁻¹ (see Fig. 2) is greater than that of S_8 (473 cm⁻¹).

We thank Dr. Larry Calhoun (UNB) for his assistance with NMR experiments, and NSERC for an operating grant (J. P.) and the Province of New Brunswick for a Women's Doctoral Fellowship (M. F.).

Notes and references

 \ddagger Filtration of the PhCS₂H/SCl₂ reaction mixture about 10 min after initial PhCS₂H addition, followed by immediate removal of solvent *in vacuo*, gave the soluble product as a mixture of yellow powder and some red sticky material. (Campaine *et al.*2 obtained red sticky oil as the soluble product, as they did not immediately remove the solvent.) The product was reacted with AgSbF₆ according to: $[PhCSSC(Ph)S]Cl_2 + 2 AgSbF_6 \rightarrow 2(SbF_6)_2 + 2$

AgCl and assuming it was all [PhCSSC(Ph)S]Cl₂.

§ *Crystal data*: for $2(SbF_6)_2$ (room temp.): $C_{14}H_{10}S_3F_{12}Sb_2$, $M = 745.89$, monoclinic, space group $P2_1/n$ (no. 14), $a = 9.359(5)$, $b = 15.148(2)$, $c =$ 15.762(2) Å, $\beta = 104.56(2)$ °, $U = 2162.8(9)$ Å³, $Z = 4$, $D_c = 2.291$ g cm⁻³, *T* = 296.0 K, $F(000)$ = 1408.00, μ (Mo-K α) = 28.85 cm⁻¹. 6923 reflections measured, 6564 independent reflections, $R(R_w) = 0.051$ (0.202), $R = \Sigma ||F_{\rm o}|| - |F_{\rm c}||/\Sigma |F_{\rm o}|$, $R_{\rm w} = [\Sigma w(|F_{\rm o}|-|F_{\rm c}|)^2/\Sigma w F_{\rm o}^2]^{1/2}$.

For $2(SbF_6)_2$ (-60 °C): C₁₄H₁₀S₃F₁₂Sb₂, *M* = 745.89, monoclinic, space group $P2_1/n$ (no. 14), $a = 9.345(4)$, $b = 15.005(5)$, $c = 15.745(4)$ \mathring{A} , $\mathring{\beta} =$ 104.71(3)°, $U = 2135(1)$ \mathring{A}^3 , $Z = 4$, $D_c = 2.320$ g cm⁻³, $T = 213$ K, $F(000) = 1408.00, \mu(\text{Mo-K}\alpha) = 29.22 \text{ cm}^{-1}$. 6683 reflections measured, 6334 independent reflections, *R*1 (*wR*2) = 0.0391 (0.1487).

For $2(AsF_6)_2$ (-100 °C): C₁₄H₁₀S₃F₁₂As₂, *M* = 652.24, monoclinic, space group $P2_1/c$ (no. 14), $a = 9.1371(9)$, $b = 14.850(2)$, $c = 15.427(2)$ \hat{A} , $\beta = 107.747(7)$ °, $U = 1993.6(4)$ \hat{A}^3 , $Z = 4$, $D_c = 2.173$ g cm⁻³, $T =$ 173(1) K, $F(000) = 1264.00$, μ (Mo-K α) = 37.77 cm⁻¹. 5041 reflections measured, 5041 independent reflections, $R(R_w) = 0.076$ (0.214). CCDC 156699–15670. See http://www.rsc.org/suppdata/cc/b1/b100001m/ for crystallographic data in CIF or other electronic format.

¶ GAUSSIAN 98W, Revision A. 3, Gaussian, Inc., Pittsburgh PA, 1998. ∑ PhCS3Cl was prepared by a modification of the reported method.2 The molar ratio of $PhCSSH:SCl₂$ was changed from 1:2 to 1:1 and the solvent from diethyl ether-CCl₄ to diethyl ether. The melting point (90–93 °C) and Raman spectrum are identical to the product obtained following the procedure of Campaine *et al.*. 2

** **1**(SbF6) was characterized also by Raman and elemental analysis [found (calc): C, 19.63 (19.90); H, 1.26 (1.20); S, 24.65 (22.80); Sb, 29.39 (28.90), F, 28.63 (27.10)%]. The observed and calculated (MPW1PW91/3-21G*) Raman frequencies are in good agreement (S-Fig. 3, S-Table 3†). A preliminary X-ray crystal structure confirms the atom connectivity $[a]$ 6.899(3), $b = 6.905(2)$, $c = 14.651(4)$ Å, $\alpha = 88.78(1)$, $\beta = 88.44(1)$, $\gamma =$ $60.34(1)°$].

[†]† The average Ph–C bond distance is 1.41(1) Å in $2(SbF_6)_2$ and 1.44(1) Å in $2(AsF_6)_2$, which are slightly shorter than a $C_{sp}^2-C_{sp}^2$ single bond distance (1.48 Å) .

‡‡ The Pauling bond order is given by $D_b = D_1 - 0.71 \log b$ where D_b is the observed bond distance and D_1 is the single bond distance $[D_1(S-S) 2.05;$ *D*₁(C–S) 1.81, *D*₁(C_{sp}²–C_{sp}²) 1.48 Å]; see ref. 9.

- 1 T. S. Cameron, A. Decken, M. Fang, S. Parsons, J. Passmore and D. J. Wood, *Chem. Commun.*, 1999, 1801.
- 2 E. Campaine, M. Pragnell and F. Haaf, *J. Heterocycl. Chem.*, 1968, **5**, 141.
- 3 R. D. Hamilton and E. Campaigne, in *Special Topics in Heterocyclic Chemistry*, ed. A. Weissberger and E. C. Taylor, John Wiley & Sons, New York, 1977, p. 271.
- 4 R. T. Oakley, *Prog. Inorg. Chem.*, 1988, **36**, 299.
- 5 J. Willemse, J. A. Cras and P. J. H. A. M. van de Leemput, *J. Inorg. Nucl. Chem. Lett.*, 1976, **12**, 255.
- 6 W. V. F. Brooks, T. S. Cameron, S. Parsons, J. Passmore and M. J. Schriver, *Inorg. Chem.*, 1994, **33**, 6230.
- 7 T. S. Cameron, R. C. Haddon, S. M. Mattar, S. Parsons, J. Passmore and A. P. Ramirez, *J. Chem. Soc., Dalton Trans.*, 1992, 1563 and references therein.
- 8 M. P. Murchie, R. Kapoor, J. Passmore and G. Schatte, *Inorg. Synth.*, 1997, **31**, 115.
- 9 L. Pauling, *The Nature of the Chemical Bond*, 3rd edn., Cornell University Press, Ithaca, NY, 1960.
- 10 K. L. McCormack, P. R. Mallinson, B. C. Webster and D. S. Yufit, *J. Chem. Soc., Faraday Trans.*, 1996, **92**, 1709.